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Abstract

Peptoids are a diverse family of sequence-defined oligomers of N-substituted glycine
monomers, that can be readily accessed by the solid-phase submonomer synthesis
method. Due to the versatility and efficiency of this chemistry, and the easy access
to hundreds of potential monomers, there is an enormous potential sequence space
that can be explored. This has enabled researchers from many different fields to
custom-design peptoid sequences tailored to a wide variety of problems in biomedi-
cine, nanoscience and polymer science. Here we provide detailed protocols for the syn-
thesis of peptoids, using optimized protocols that can be performed by non-chemists.
The submonomer method is fully compatible with Fmoc-peptide synthesis conditions,
so the method is readily automated on existing automated peptide synthesizers using
protocols provided here. Although the submonomer synthesis for peptoids is well
established, there are special considerations required in order to access many of the
most useful and desirable sidechains. Here we provide methods to include most of
the amino-acid-like side chains, some of the most important non-natural monomer
classes, as well as the creation of peptoid conjugates and peptide-peptoid hybrids.

1. Introduction

Oligomeric N-substituted glycines (a.k.a. peptoids) are a family of

sequence-defined biomimetic synthetic polymers which have a history of

nearly three decades (Simon et al., 1992). Peptoids, with the side chains

appended to the nitrogen rather than the α-carbon as in peptides, lack both

hydrogen-bond donors and chiral centers along their backbones (Fig. 1)

(Sun & Zuckermann, 2013). Compared to peptides, peptoids have shown

excellent properties including enhanced chemical and enzymatic stability,

thermal processability, and good solubility in common solvents (Chan

et al., 2018; Secker, Brosnan, Luxenhofer, & Schlaad, 2015; Xuan &

Zuckermann, 2020a, 2020b). Also, studies have shown that peptoids exhibit

good cellular permeability (Wender et al., 2000), low cytotoxicity (Xuan

et al., 2016, 2017), low immunogenicity (Meister, Taimoory, & Trant,

2019), and can bind to biological targets with high affinity (Alluri,

Reddy, Bachhawat-Sikder, Olivos, & Kodadek, 2003; Cai, Lee, Chiang,

& Kodadek, 2011; Simon et al., 1992; Zuckermann et al., 1994). More

Fig. 1 Peptoids share the same glycine backbone with peptides, but have their side
chains appended to the nitrogen atom instead of the alpha carbon.
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generally, peptoids offer a versatile platform where a tremendous variety of

chemically distinct side chains can be efficiently arranged into precisely

controlled, information-rich sequences. The widely adopted iterative

submonomer solid-phase synthesis method provides a low-cost and practical

route to build peptoids from hundreds of amine synthons into chains up to

greater than 50 monomers in length (Zuckermann, Kerr, Kent, & Moos,

1992). Thus, polypeptoids provide a general polymer platform to custom

design molecular attributes, properties and functions, by control of

side-chain chemistry and monomer sequence. For these reasons, peptoids

have received considerable attention from many areas of exploration

spanning material science and biomedicine (Fig. 2).

Since their discovery, peptoid oligomers (<10mers) have gained consid-

erable interest as promising drug leads. Peptoids, unlike most small mole-

cules, can be easily synthesized using a vast pool of readily available

amines, and are ideally suited for combinatorial approaches to drug discovery

(Alluri et al., 2003; Zuckermann &Kodadek, 2009). Multiple short peptoids

demonstrated potency against a range of molecular and cellular targets

including multi-resistant bacteria (Czyzewski et al., 2016; Khara et al., 2020;

Molchanova, Hansen, & Franzyk, 2017), fungi (Spicer et al., 2019), cancer

(Huang et al., 2014; Schneider et al., 2018), leishmaniasis (Eggimann, Bolt,

Denny, & Cobb, 2015) and Huntington’s disease (Chen et al., 2011).

Additionally, short peptoids have demonstrated utility as diagnostics in

Fig. 2 Due to their facile synthesis, sidechain diversity, and robustness, peptoids have
been used in a wide variety of biomedical and material science applications.

243Submonomer synthesis of sequence defined peptoids



the detection of cancer, (Hooks, Matharage, & Udugamasooriya, 2011;

Matharage, Minna, Brekken, & Udugamasooriya, 2015) amyloidogenic

misfolded protein and prions (Hornemann et al., 2019; Yam et al., 2011),

light (Kang et al., 2017), cyanide (Lim & Lee, 2016), mercury (Knight

et al., 2017), pH (Shin & Kirshenbaum, 2007), cations (Culf, 2019;

Schettini et al., 2018), and can serve as antifouling materials themselves

(Barry et al., 2019). Peptoid-peptide hybrids created via incorporation of

peptoid residues into a peptide backbone have also been reported to dem-

onstrate high therapeutic potency (Molchanova et al., 2017; Olsen, 2010).

Peptoids have also emerged as attractive building blocks to construct a

wide array of biomimetic ordered nanostructures, which are beginning to

rival the structural and functional complexity found in nature (Xuan &

Zuckermann, 2020a, 2020b). Peptoids, though lacking both hydrogen-

bond donors and chiral centers on the backbones, have the capacity to form

single-chain folded structures, assemble into different supramolecular struc-

tures, and phase-separate/crystallize into various bulk morphologies

depending on their monomer sequence and side-chain chemistry. Studies

have shown that certain individual peptoid chains can fold into an array

of secondary structures including helices (Wu, Sanborn, Zuckermann, &

Barron, 2001), ribbons (Crapster, Guzei, & Blackwell, 2013), and square-

helices (Gorske, Mumford, Gerrity, & Ko, 2017). Amphiphilic diblock

copolypeptoids are well-known to phase-separate into lamellar morphol-

ogies in bulk and self-assemble in solution into a variety of well-defined

nanostructures including helices (Murnen, Rosales, Jaworski, Segalman,

& Zuckermann, 2010), spherical micelles (Sternhagen et al., 2018), fibers

(Lee, Smart, Guo, Epps, &Zhang, 2011), vesicles (Sun et al., 2016), nanotubes

( Jin et al., 2018; Sun et al., 2016), and nanosheets ( Jin et al., 2016; Robertson

et al., 2016; Xuan et al., 2019) through intra- and inter-molecular interactions.

Because the peptoid backbone is comprised of tertiary amides, they can

readily adopt both the cis and trans conformations in solution. However, the

choice of side chain can greatly influence which isomer is preferred (Gorske,

Stringer, Bastian, Fowler, & Blackwell, 2009). For example, cationic alkyl

ammonium ethyl side chains have been identified as a potent inducer of

the cis-backbone conformation of peptoids in solution (Wijaya et al., 2019).

Interestingly, crystalline peptoids, regardless of their different side chains,

almost always adopt a nearly identical rectangular crystalline lattice with

extended, cis-backbone conformation (Greer et al., 2018).

Peptoids also have well-defined intrinsic conformational preferences

that are distinct from peptides(Edison et al., 2018). Only two regions of
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the peptoid Ramachandran plots (derived from both cis and trans amide

conformations) were shown to be populated by an analysis of backbone

dihedral angle pairs (ϕ and ψ) in 46 high quality, experimentally determined

peptoid structures reported in literatures (Fig. 3) (Spencer et al., 2019).

With all the developments and discoveries in the structure, property and

application of peptoids, as well as the emerging universal design rules that

govern peptoid folding and assembly, it is important to present clear synthe-

sis protocols to enable chemists and non-chemists alike, to construct pep-

toids tailored to any problem of interest.

Fig. 3 Comparison of the calculated conformational free energy landscape
(Ramachandran plots) for (A) a model peptide Ac-L-Ala-N(Me)2 vs. a model peptoid
Ac-Sar-Sar-N(Me)2 in both the (B) cis conformation, and (C) in the trans conformation.
The red triangles in (B) and (C) indicate conformers observed in known peptoid X-ray
crystal structures, and the red X’s indicate conformers observed in known peptoid NMR
structures. Adapted with permission from Spencer, R. K., Butterfoss, G. L., Edison, J. R.,
Eastwood, J. R., Whitelam, S., Kirshenbaum, K., & Zuckermann, R. N. (2019). Stereochemistry
of polypeptoid chain configurations. Biopolymers, 110(6), e23266. doi:10.1002/bip.23266.
Copyright 2019, Wiley.
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2. Materials

2.1 Reagents
1. N,N0-Dimethylformamide (DMF)

2. N-methylpyrrolidinone (NMP)

3. 1,2-Dichloromethane (DCM)

4. Tetrahydrofuran (THF)

5. Dichloroethane (DCE)

6. 20% (v/v) 4-methylpiperidine in DMF for Fmoc group removal

7. N,N0-diisopropylcarbodiimide (DIC) in DMF

8. 1–2M amine solutions in NMP (See Section 4 Submonomer

Amines below)

9. 95% trifluoroacetic acid (TFA)/2.5% triisopropylsilane (TIS)/2.5%

water for deprotection and cleavage from resin

10. RinkAmide-MBHA resin (�0.5 to 0.75mmol/g loading) 100–200mesh

Note: The methods outlined here use Rink Amide-MBHA resin which

results in C-terminal amides after cleavage. A wide variety of other resins

commonly used in peptide synthesis can be employed for peptoid synthesis

as well (Culf & Ouellette, 2010). For most automated synthesis systems,

100–200 mesh resin is used so the fritted vessels are not clogged.

11. 0.25M solution of AgClO4 in THF

12. 1,4-diaminobutane (CAS # 110-60-1)

13. 1H-2-acetyldimedone pyrazole-1-carboxamidine hydrochloride (CAS

#4023-02-3)2- acetyldimedone (CAS #1755-15-3)

14. O-(1H-6-Chlorobenzotriazole-1-yl)-1,1,3,3-tetramethyluronium

hexafluorophosphate (HCTU) (CAS #330645-87-9)

15. 2M formic acid in NMP

16. MALDI matrix such as α-cyano-4-hydroxycinnamic acid (CHCA)

17. Potassium hydroxide solution (KOH) in Water

2.2 Equipment
1. Fritted polypropylene syringes and caps for manual synthesis (Torviq,

Tucson AZ, Part #SF-1000-LL, PC-LL) (Manual reaction vessel see

Section 3.1)

2. 6mL polypropylene cartridge with 20μm PE frit (Applied Separations

Allentown, PA part #2416) (See Section 5.1 cleavage/deprotection

method)
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3. 20mL glass scintillation vials with polypropylene lined caps

4. 3mL Polypropylene disposable pipettes

5. Rocking or orbital shaker

6. Solvent evaporators (Biotage V10, Genevac HT-3)

Note: A standard rotary evaporator can be used but will not be as efficient.

7. Lyophilizer

8. Analytical HPLC or UPLC

9. C4 Analytical UPLC column such as Waters Acquity UPLC BEH300

C4, 300Å Pore Size, 1.7μm particle size, 2.1�100mm, part #

186003686

10. C18 Analytical UPLC column such as Waters Acquity UPLC

Peptide BEH C18 Column, 300Å Pore Size, 1.7μm particle size,

2.1�100mm, part # 186004496

11. Preparative HPLC system such as Waters Prep 150 HPLC

12. C4 Preparative HPLC column such as Waters Symmetry300™ 5μm,

19�100mm

13. C18 Preparative HPLC column such as Waters Xbridge™ BEH300

5μm, 19�100mm

14. Cyano Functionalized Preparative HPLC column such as Waters

XSelect™ HSS CN (Cyano) 5μm, 19�150mm

15. 0.2μm syringe filter PVDF (hydrophilic) or PTFE (hydrophobic)

membrane, 13mm

16. 0.45μm syringe filter PVDF or PTFE membrane, 25mm

17. Electrospray and/or MALDI mass spectrometer systems

18. Automated Peptide Synthesizer (such as the Gyros Protein Technologies

Prelude X or Symphony X, CEM Liberty Blue, or similar)

3. Solid-phase peptoid synthesis

Precise control over the sequence of chemically distinct monomers

along the peptoid chain is a prerequisite to precisely control the peptoid

structures and their associated properties. It has been nearly three decades

since the first report of the submonomer solid-phase synthesis of peptoids

(Zuckermann et al., 1992). This efficient and robust synthetic method

involves a two-step monomer addition cycle, without using any main chain

protecting groups (Fig. 4). The first step is an acylation reaction of a resin-

bound amine with bromoacetic acid, and the second step is a displacement

reaction with a primary amine submonomer, to iteratively and sequentially
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incorporate chemically distinct monomers along the chain. This synthetic

strategy is greatly simplified compared to the use of fully-protected mono-

mer units.(Simon et al., 1992) Owing to the cheap, readily accessible and

diverse family of primary amine synthons, a vast variety of peptoids with

diverse side chains and precisely controlled sequences can be easily accessed.

The beauty of this method is the modularity: hundreds of chemically distinct

monomers can be incorporated under a similar set of mild conditions. High

coupling yields and short reaction times allow rapid design and optimization

of peptoids spanning an immense range of property space.

The standard submonomer method requires certain reactive side chains

to be protected with common acid-cleavable protecting groups (e.g., boc

and tert-butyl) and is thus fully compatible with Fmoc solid-phase peptide

synthesis to build peptoid-peptide hybrids. With the advances in peptoid

science and technology, a myriad of peptoid sequences, including the ones

with anionic and cationic monomers, chiral monomers, heterocyclic mono-

mers, functional monomers and superhydrophobic monomers, have been

synthesized using the submonomer solid-phase synthesis method with mod-

ification and optimization accordingly. Since some of these monomers

require modifications to the standard submonomer synthesis conditions,

we present here detailed synthesis protocols to enable chemists and non-

chemists alike to readily incorporate these diverse monomers into sequences

of their own design.

Fig. 4 Sequence-defined peptoids are made by the solid-phase submonomer method,
using a simple two-stepmonomer addition cycle from cheap, stable precursors, at room
temperature in open vessels. The first step is an acylation of a resin-bound amine with a
haloacetic acid, and the second step introduces the sidechain via a halogen displace-
ment reaction with a primary amine. The method is general for hundreds of amines, yet
subtle modifications are required for certainmonomer classes. Reprinted with permission
from Sun, J., & Zuckermann, R. N. (2013). Peptoid polymers: A highly designable bioinspired
material. ACS Nano, 7(6), 4715–4732. doi:10.1021/nn4015714. Copyright 2013 American
Chemical Society.
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3.1 Manual submonomer peptoid synthesis
Note: All work with hazardous chemicals should be performed in a chemical

fume hoodwith appropriate personal protective equipment. DMF andDCE

are reasonably suspected carcinogens. N,N0-diisopropylcarbodiimide (DIC),

4-methylpiperidine, and bromoacetic acid are hazardous to the skin, eyes

and respiratory tract. DIC may be toxic if inhaled or absorbed through

the skin and may result in sensitization.

The method below is appropriate for a 50 μmol scale and is conducted at

room temperature in air. All reagents were used without further purifica-

tion. Once the resin-bound Fmoc group is removed, peptoid synthesis

proceeds from the initial C-terminal residue to the final N-terminal residue

by repeating the acylation and displacement steps.

1. Add 83mg of Rink amide-MBHA resin (0.6mmol/g loading) to a fritted

syringe reaction vessel. Swell the resin by adding 2mL of DMF. Agitate

by rocking or shaking for 30min. Drain the DMF from the syringe to

retain the swelled resin.

2. Fmoc removal: Add 1mL of 20% 4-methylpiperidine in DMF (v/v) to

deprotect the resin-bound Fmoc group. Agitate for 2min and drain.

Repeat with an additional 1mL of 20% 4-methylpiperidine in DMF

(v/v) with a 12min incubation.

3. Wash the resin by adding 2mL of DMF, agitating for 1min, draining.

Repeat twice more.

4. Acetylation: Add 1mL of 0.8M bromoacetic acid in DMF followed by

1mL of 0.8M N,N0-diisopropylcarbodiimide (DIC). Cap the syringe

and incubate with rocking for 20min, then drain and wash with

DMF (5�2mL).

5. Displacement: Add 1mL of 1–2M amine in NMP. Incubate with

rocking for 30–120min, then drain and wash with DMF (4�2mL).

6. Repeat acetylation step 4 and displacement step 5 in turn to elongate

peptoid sequence. To pause during peptoid synthesis finish a displace-

ment step wash with 3�2mL dichloromethane, cap and store at

4°C. It is recommended that the synthesis is not paused after the second

displacement due to a competing diketopiperazine side product reaction

(Figliozzi, Goldsmith, Ng, Banville, & Zuckermann, 1996). To con-

tinue growing the peptoid chain, first re-initiate the synthesis by

re-swelling the dried resin in 2mL of DMF for 10min.

7. After the final displacement is complete, wash with DMF (5�2mL),

then DCM (3�2mL), air dry the resin. Cap and store reaction vessel

at 4 °C until ready for cleavage.
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3.2 Automated peptoid synthesis
Due to the good solubility and stability of the reagent solutions used, and

their tolerance to air exposure, the submonomer method can be readily

adapted to commercially available peptide synthesis instrumentation. In

practice, the chemistry can be implemented on these machines such that

there is a very close match to the manual synthesis conditions. One differ-

ence is that in an automated run, all the reagents must be prepared ahead of

time and be stable for hours to potentially days. Since, like peptide synthesis,

the submonomer method uses a repeating two-step monomer addition

cycle, any existing peptide synthesizer software can be slightly modified

to accommodate the peptoid chemistry. Researchers have adapted the sub-

monomer method to many standard commercial peptide synthesizers, such

as the Aapptec Apex 396, CEM Liberty Blue microwave synthesizer, and

Gyros Peptide Technologies Prelude X and Symphony X systems.

In preparation for an automated synthesis, the instruments are setup with

submonomer amine solutions placed in the containers typically used for

amino acid solutions. Most submonomer solutions and reagents are stable

for several days at room temperature over the duration of an extended

synthesis provided they stay soluble in solution. It may be necessary to

add a co-solvent or dilute the submonomer amine solution to maintain sol-

ubility. All needed reagents, bromoacetic acid, DIC, deprotection agent

4-methylpiperidine, and wash solvents DMF and DCM are loaded into

the synthesizer reagent containers. Extra reagent may be consumed due

to priming and dead volumes in the system, so enough reagent should

be prepared initially. Syntheses are typically performed at room tempera-

ture, but the submonomer chemistry can be performed with significantly

shorter times at elevated temperatures (Burkoth, Fafarman, Charych,

Connolly, & Zuckermann, 2003; Wijaya et al., 2019). Table 1 provides a

generic method sequence for an automated peptoid synthesizer appropriate

for a 50–100 μmol scale. The start cycle is performed to swell the resin and

remove the resin-bound Fmoc group. The peptoid coupling cycle is

repeated for each peptoid monomer addition in the sequence starting at

the C-terminus and proceeding to the N-terminus of the sequence. The

end sequence includes final washes and resin drying steps performed at

the conclusion of the synthesis. Additional synthesizer specific steps may

be required for system initialization and setup.
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Table 1 Submonomer synthesis methods adapted for use on commercial automated peptide synthesizers.
Step Operation Reagent Reaction time (HH:MM:SS) Volume (ML) Drain Repetition

Automated Synthesis—Synthesis Start Cycle:

1 Swell Resin DMF 00:10:00 3.0 Yes 3

2 Fmoc Deprotection 1 20% 4-Methylpiperidine in DMF 00:00:30 2.0 Yes 1

3 Fmoc Deprotection 2 20% 4-Methylpiperidine in DMF 00:12:00 2.0 Yes 1

4 Wash DMF 00:00:30 2.5 Yes 6

Automated Synthesis—Peptoid Coupling Cycle:

1 Bromoacetylation 0.8M Bromoacetic Acid in DMF 00:00:00 1.0 No 1

2 0.8M DIC in DMF 00:20:00 1.0 Yes 1

3 Wash DMF 00:00:30 2.5 Yes 6

4 Displacement 1.0M Submonomer Amine 01:00:00 1.0 Yes 1

5 Wash DMF 00:00:30 2.5 Yes 6

Automated Synthesis—Synthesis End Cycle:

1 Base Wash 20% 4-Methylpiperidine in DMF 00:15:00 2.0 Yes 1

2 Wash DMF 00:00:30 2.5 Yes 6

3 Wash Dichloromethane 00:00:30 2.5 Yes 6

4 Drain to Dry Resin 00:10:00 Yes 1



4. Submonomer amines

A wide diversity of amines have been incorporated into peptoids

through the submonomer synthesis method (Culf & Ouellette, 2010).

The majority of amines routinely used in peptoid synthesis are commercially

available in quantities required at a reasonable cost. Most amines can be used

as provided without any additional purification. Some submonomer amines

that have reactive side-chain groups are not commercially available in their

protected form, and their preparation requires the addition of a protecting

group through one or two-step methods available in the literature (Wuts,

Greene, & Greene, 2014).

The standard peptoid synthesis conditions described above have been

successfully used with the great majority of submonomers, however, there

are several important classes of side chains that require distinct synthesis con-

ditions to incorporate them efficiently. These modified protocols are noted

and described below.

4.1 Free-basing methods
Some amines are provided by the supplier in their protonated salt form (e.g.,

hydrochloride). These salts are often solids and are more stable for long-term

storage. However, submonomer amine solutions need to be in the free base

form. This requires a free-basing step involving the addition of base and

removal of the resulting salt. This can be done by a liquid-liquid extraction

process followed by solvent evaporation, or by an in situ neutralization/

decanting process. The extraction method is more controlled and versatile

since the purified free-base is isolated. The in situ method does not allow

isolation of the free base, but it is a faster and simpler method and is sufficient

for many amine hydrochlorides.

4.1.1 Free-basing of amine salts by liquid extraction
1. Prepare KOH solution by dissolving KOH (0.071mol) in 20mL

of water.

2. Dissolve the amine salt (0.071mol) in 20mL of the KOH solution.

3. Transfer the solution into an appropriately-sized separatory funnel.

4. Wash the aqueous phase with DCM (3�60mL). Collect DCM

fractions

5. Dry combined fractions over Na2SO4 (5–10min).
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6. Filter DCM solution from Na2SO4 into a pre-tared round flask and

evaporate on a rotary evaporator.

Note: Losses of �30% are typical so sufficient excess material should be used

in this process.

4.1.2 In situ free-basing of amine salts
1. Prepare a 1M suspension of desired amine salt in 13.5mL DMF in a

50mL Falcon tube.

2. Prepare a 50% (w/w) KOH solution in 0.72mL water.

3. Quickly add KOH solution to the amine suspension, cap and vortex

vigorously. A precipitate typically forms.

4. Optionally, sonicate the suspension in a warm water bath for 10min.

5. Centrifuge the solution to pellet the precipitated KCl/water.

6. Carefully decant the supernatant to provide a�1M free based amine

solution in DMF. This solution can be used directly as the submonomer

solution in the displacement step.

Note: If the solution is cloudy after centrifugation, filter the solution using a

syringe and 0.45μm PVDF filter before use.

4.2 Submonomers with amino-acid like functionality
Fundamental to the field of peptoid science is biomimicry. Thus, there is

great interest in incorporating peptide mononomers that recapitulate the

functional groups found in the natural amino acids. Fortunately, many

amino acid side chains can be directly incorporated as amines, whereas

others require using a slightly analogous structure, due to readily availability

or stability. Mimicry of the side chain functionality found in the amino acids

is possible using the submonomers summarized in Table 2. Other choices are

possible, but these are among the most commonly implemented in the field.

4.2.1 Arginine-like monomer addition: Guanidino group incorporation
Protected guanidinopropyl amine submonomer have been used to incorpo-

rate arginine like residues into peptoids (Uno, Beausoleil, Goldsmith,

Levine, & Zuckermann, 1999). However, poor solubility and low coupling

efficiency coupled with the lack of commercial availability have limited this

approach. More recent methods have been developed where amino groups

are introduced into the growing peptoid, which are then guanidinylated

on-resin just prior to cleavage. The method below was developed to selec-

tively add the guanidino group on resin using an orthogonal deprotection

strategy with Dde-OH (2-acetyldimedone) (Bolt & Cobb, 2016).
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Table 2 Amino acid-like submonomer amines.
Sidechain (R) Protection Submonomer amine CAS# Amino acid mimic Method note

-CH3 Methylamine 74-89-5 Ala 3.1a

-CH2CH2CH2N¼C(NH2)2 Arg 4.2.1

-CH2CO2H t-butyl Glycine tert-butyl ester hydrochloride 27532-96-3 Asp 4.1

-CH2CH2CO2H t-butyl β-Alanine tert-butyl ester hydrochloride 58620-93-2 Glu 4.1

-CH2CONH2 Glycinamide Hydrochloride 1668-10-6 Asn 4.1

-CH2CH2-(4-imidazolyl) Histamine 51-45-6 His 4.3

-CH2CH(CH2)2 Isobutylamine 78-81-9 Leu 3.1

-CH2CH2NH2 Boc tert-Butyl N-(2-aminoethyl)carbamate 57260-73-8 Lys 3.1

-CH2CH2CH2CH2NH2 Boc tert-Butyl N-(4-aminobutyl)carbamate 68076-36-8 Lys 3.1

-CH2C6H5 Benzylamine 100-46-9 Phe 3.1

-CH2CH2OH TBDMS 2-(tert-Butyldimethylsilyloxy)ethanamine 101711-55-1 Ser 3.1

-CH2CH2-(3-indolyl) Tryptamine 61-54-1 Trp 4.3

-CH2CH2-p-C6H4OH t-butyl 2-(4-(t-Butoxy)phenyl)ethan-1-amine 157981-64-1 Tyr 3.1

-CH2CH2SH Trityl S-Tritylcysteamine hydrochloride 15297-43-5 Cys 4.1

-CH2CH2SCH3 2-(Methylthio)ethylamine 18542-42-2 Met 3.1

-CH(CH3)2 2-Aminopropane 75-31-0 Val 3.1

-CH(CH3)CH2CH3 sec-butylamine 13952-84-6 Ile 3.1

aUsed in standard method as a 40% Methylamine solution in water for displacement reaction



Note: This method is at 100μmol resin scale.

1. To include a guanidine functionalized monomer, following a stan-

dard acetylation reaction with bromoacetic acid, perform a displace-

ment step by adding 1mL of 1.5M unprotected diamine such as

1,4-diaminobutane (CAS # 110-60-1). Incubate with rocking for

60min, then drain and wash with DMF (3�2mL).

2. Protect the newly added diamine by adding 0.5mL of 2-acetyldimedone

(0.2g, 1mmol) in DMF. Incubate with rocking for 1h at room

temperature.

3. Drain and wash the resin with DMF (3�2mL).

4. Perform additional couplings to complete the sequence following

standard methods.

5. Deprotect the Dde by adding 2mL of a 2% hydrazine solution in DMF

(v/v) incubate with rocking for 3min. Repeat for a total of four times.

6. Guanidinylate the free amines, on resin, by adding six equivalents of

1H-pyrazole-1-carboxamidine hydrochloride per free amine and six

equivalents of DIPEA per free amine in the minimum volume of

DMF. Incubate with rocking for 1h at room temperature.

7. After the final displacement is complete, wash with DMF (5�2mL),

then dichloromethane (DCM) (3�2mL). Cap and store reaction vessel

until ready for cleavage.

4.3 Unprotected heterocyclic submonomers
Under standard submonomer conditions, most amines that contain hetero-

cyclic nitrogen in the side chain do not incorporate efficiently. This is

thought to be due to irreversible alkylation of these nitrogens during each

acetylation step. However, this alkylation can be dramatically reduced in

many cases by using chloroacetic acid instead of bromoacetic acid in the

acylation step. The method below can be used to efficiently incorporate

unprotected imidazoles, pyridines, pyrazines, indoles, and quinolines

(see Table 3) (Burkoth et al., 2003).

Note: This method is at 50 μmol resin scale. The standard submonomer

synthesis method with bromoacetic acid can be used for all couplings prior

to the first unprotected heterocycle addition. However, chloroacetic acid

conditions should be used for the first heterocycle and all couplings that

follow.
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1. Acetylation: Add 850μL of 0.4M chloroacetic acid (0.34mmol) in DMF

and 200μL of 2M DIC (0.4mmol) in DMF. Cap the syringe and incu-

bate with rocking for 5min, then drain and wash with DMF (5�2mL).

2. Displacement: Add 850μL of 2M amine in NMP. Incubate with

rocking for 60min, then drain and wash with DMF (4�2mL).

Note: If the C-terminal position in the sequence is a monomer requiring a

chloroacetic acid acetylation extend the displacement time to 180min to

ensure completion.

Table 3 Heterocyclic, chiral and N-aryl peptoid submonomers.
Sidechain (R) Protection Submonomer amine CAS # Method note

Heterocyclic

– Histamine 51-45-6 4.3

– 2-Picolylamine 3731-51-9 4.3

– Tryptamine 61-54-1 4.3

Chiral

– (S)-(�)-

alpha-Methylbenzylamine

2627-86-3 4.4.1

– (R)-(+)-

alpha-Methylbenzylamine

3886-69-9 4.4.1

N-Aryl glycines

– 4-trifluoromethylaniline 455-14-1 4.4.2

– 4-bromoaniline 106-40-1 4.4.2

– 4-aminobenzophenone 1137-41-3 4.4.2
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3. Repeat acetylation step 1 and displacement step 2 to elongate the peptoid

sequence.

4. After the final displacement is complete, wash DMF (5�2mL), then

DCM (3�2mL). Cap and store reaction vessel until ready for cleavage.

4.4 Structure-inducing submonomers
4.4.1 Chirality
Though peptoids lack both hydrogen bonding donors and chiral centers

along the backbone, they have the capacity to adopt stable helices in organic

and aqueous solution, where all the backbone amides are in a cis confor-

mation. Monomers with α-chiral aromatic side chains, such as (S)- or

(R)-N-1-phenylethyl and (S)- or (R)-N-1-naphthylethyl are common helix-

inducing units (Sanborn, Wu, Zuckerman, & Barron, 2002; Stringer,

Crapster, Guzei, & Blackwell, 2011; Wu et al., 2001). Chiral aliphatic side

chains, such as (S)-N-1-tert-butylethyl, (S)-N-1-cyclohexylethyl and (S)-

N-sec-butyl, have also been shown to induce and stabilize α-helices of pep-
toids driven by the steric influence of the bulky, chiral side chains (Rzeigui

et al., 2020; Wu et al., 2001).

Chirality is often introduced at the alpha position of a sidechain

(Table 3). This introduces some steric hinderance, and in some cases acid

sensitivity. The (S)- or (R)-N-1-phenylethyl side-chain have been well uti-

lized because they incorporate in excellent yield. The incorporation of

the submonomers in this class may be sluggish (due to the alpha branching)

and may benefit from elevated reaction temperatures.

Note: N-1-phenylethyl and N-1-naphthylethyl peptoids are sensitive to

extended acid exposure. TFA cleavage and deprotection times should be

minimized to prevent acidolytic scission of these side-chains. Rapid removal

of TFA using an evaporator is helpful.

4.4.2 N-aryl glycines
N-aryl glycines, where the phenyl ring is directly attached to the peptoid

backbone nitrogen, have been shown to strongly induce a trans backbone

amide bond geometry (Crapster et al., 2013; Paul et al., 2012). The standard

submonomer synthesis methods work for electron rich aniline submono-

mers such as 4-ethylaniline and 4-methoxyaniline with displacement

times of 1–3h. However, standard methods often fail due to the sluggish

reactivity of weakly nucleophilic electron poor aniline submonomers such

as 4-trifluoromethylaniline, 4-bromoaniline, and 4-aminobenzophenone
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(Table 3). In those cases, a simple method that is often effective is to

co-dissolve potassium iodide in the amine solution (Burkoth et al., 2003;

Wijaya et al., 2019). A modified method that adds halophilic silver

salts to the displacement reaction facilitates bromide abstraction and AgBr

precipitation dramatically accelerating the displacement reaction for

these electron poor aniline submonomers (Proulx, Yoo, Connolly, &

Zuckermann, 2015).

Note: Some automated peptide synthesizers may not be chemically compatible

with THF. Check with the instrument manufacturer.

Modified method for the addition of electron poor aniline

submonomers.

Note: This method is at 60 μmol resin scale.

1. Following the standard method acetylation step, wash the resin with

DMF (3�2mL) followed by THF (2�2mL).

2. Add 2.5mL of a 1.5M of the aniline submonomer in THF.

3. Add 710μL of a 0.25M solution of AgClO4 in THF (3 equivalents).

4. Incubate the reaction for 1h with rocking.

5. Wash with DMF (3�2mL).

6. If the next residue is a peptoid add 1mL of 0.8M bromoacetic acid in

DMF and 1mL of 0.8M DIC. Cap the syringe and incubate with

rocking for 20min. Repeat this step.

7. If the next residue is a standard submonomer use standard displacement

conditions and proceed with the synthesis detailed in the standard

submonomer method.

4.4.3 Submonomers that induce cis amide conformation
A number of side chains have been incorporated into peptoids to induce the

cis-amide backbone conformation. A common approach to favor the cis

amide conformation is to use bulky, α-branched side-chains that disfavor

steric interactions present in the trans conformation. Side-chains in this cat-

egory include 1-naphthylethyl, tert-butyl, (benzyltriazolyl)ethyl (Caumes,

Roy, Faure, & Taillefumier, 2012; Gorske et al., 2009; Roy et al., 2013).

Another class of side chains leverages attractive intramolecular interactions

between the amide carbonyl oxygen and the side-chain moiety to stabilize

cis-amide isomers, such as the 4-methylpyridinium side chain (Gorske et al.,

2009). Cationic alkyl ammonium ethyl side-chains exhibit potent enforce-

ment of the cis-amide backbone using an ensemble of weak intramolecular

CH-O and/or NH-O hydrogen bonds between the side-chain and the

backbone carbonyl moieties (Wijaya et al., 2019).
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4.4.3.1 Cationic alkyl ammonium ethyl amine submonomer (N,
N0-diisopropylethylene diamine) coupling

Note: Chloroacetic acid with a short reaction time is used for the acety-

lation step for the residue following the incorporation of the

N,N0-diisopropylethylene diamine submonomer to avoid the formation

of a cyclized ketopiperazine product. Bromoacetic or chloroacetic acid acet-

ylation can be used for the incorporation of the initial N,N0-diisopropyl-
ethylene diamine residue in the sequence.

1. Wash/swell the resin by rocking with 2mL of NMP for 15min. Repeat.

2. Acetylation: Add 0.5mL of 2M DIC in NMP and 0.5mL of 2M chlo-

roacetic acid in NMP. Cap the syringe and incubate with rocking for

2min, then drain. Wash with NMP (3�2mL).

3. Displacement: Add 1mL of 1M N,N0-diisopropylethylene diamine in

NMP. Incubate with rocking for 60min, then drain and wash with

NMP (3�2mL).

4. Acetylation: Add 0.5mL of 2M chloroacetic acid in NMP, and 0.5mL

of 2M DIC in NMP. Cap the syringe and incubate with rocking for

2min, then drain. Wash with NMP (3�2mL).

5. Displacement step appropriate for next residue.

4.5 Ether-containing submonomers
Ether-containing monomers (Table 4) have been successfully incorpora-

ted into homo-and co-polypeptoids. Homopolypeptoids bearing different

length of ether-like side chains are hydrophilic and are amorphous with

low glass transition temperature (Tg) which facilitates their rapid chain

motion in bulk (Sun, Stone, Balsara, & Zuckermann, 2012). The low-

Tg feature and the ability to complex with lithium cations make them poten-

tial polyelectrolytes for lithium-ion transport in batteries. Ether-containing

side chains are highly hydrophilic and non-charged, which enables polyeth-

ylene glycol like behavior to be introduced. These have been incorporated

to increase the aqueous solubility of hydrophobic peptoids, as antifouling

surface coatings, and for the passivation of DNA and carbon-based

nanostructures (Chio et al., 2019; Wang et al., 2020). The high hydrophi-

licity of these side chains are also good building blocks for constructing

amphiphilic diblock copolypeptoids to induce phase separation in bulk

and self-assembly in aqueous solution (Greer, Stolberg, Kundu, et al.,

2018; Xuan et al., 2019). The either-containing monomers can be readily

incorporated into peptoid chains by standard peptoid synthesis methods.
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Table 4 Submonomers for cis induction, ether and lipid incorporation, and conjugation.
Sidechain (R) Protection Submonomer amine CAS # Method note

Cationic alkyl ammonium ethyl

– N,N0-Diisopropylethylenediamine 121-05-1 4.4.3

Ether containing

-CH2CH2OCH3 – Methoxyethylamine 109-85-3 4.5

-(CH2CH2O)2CH3 – 2-(2-Methoxyethoxy)ethylamine 31576-51-9 4.5

-(CH2CH2O)3CH3 – 2-(2-(2-Methoxyethoxy)ethoxy)ethylamine – 4.5

Lipid-like

-CH2(CH2)5CH3 – Heptylamine 111-68-2 4.6

-CH2(CH2)6CH3 – Octylamine 111–86-4 4.6

-CH2(CH2)8CH3 – Decylamine 2016-57-1 4.6

-CH2(CH2)10CH3 – Dodecylamine 124-22-1 4.6

-CH2(CH2)11CH – Tridecylamine 2869-34-3 4.6

– 2-Ethyl-1-hexylamine 104-75-6 4.6

Peptoid conjugation

– 3-azido-1-aminopropane 88192-19-2 4.8

– Propargyl amine 2450-71-7 4.8

– S-tritylcysteamine hydrochloride 15297-43-5 4.1,4.8



4.6 Lipid-like submonomers
Polypeptoids bearing lipid-like monomers (Table 4) are highly hydrophobic

and crystalline (Greer et al., 2018). Diblock copolypeptoids containing a

hydrophobic block with lipid-like side chains and a hydrophilic block have

been shown to phase-separate into lamellar morphology in bulk and

self-assemble into nanosheets and nanotubes in aqueous solution, driven

by the crystallization of the lipid-like block (Greer, Stolberg, Xuan, et al.,

2018; Jiang et al., 2018; Sun et al., 2016). Some antimicrobial peptoids also

use these lipid-like monomers (Chongsiriwatana et al., 2011). Polypeptoids

bearing lipid-like side chains are often achievable by standard peptoid syn-

thesis methods. However, due to the high hydrophobicity of the resulting

peptoids, the purification and characterization of the final product can be

challenging. Due to limitations of common C4 and C18 columns, this class

of peptoid often requires use of less hydrophobic cyano columns (e.g.,

Waters XSelect HSS CN (Cyano) 5μm 19�150mm). A linear, binary elu-

tion gradient (solvent A and B) was used from 50% to 95% B in 20min at

a flow rate of 15mL/min. Here solvent A was 10% isopropanol in water

with 0.1% TFA, and solvent B was 10% isopropanol in acetonitrile with

0.1% TFA.

Note:

1. Some very hydrophobic amines (e.g., tridecylamine) are insoluble in

DMF and require a mixture of 50:50 (v/v) DMF:DCE in order to

dissolve and react efficiently.

2. Reaction with poorly soluble lipid amines requires prolonged times,

usually between 2 and 3h, but if left for longer times (e.g., overnight)

the lipid amine can start to precipitate, thus requiring more rigorous

washes.

4.7 Peptide/peptoid hybrid sequences
Since peptide and peptoid chemistries use the same acid-deprotection strat-

egy, and many of the reagents/solvents are the same, their chemistries are

readily interchangeable. Peptide residues can be added to peptoid sequences

to form hybrid peptide/peptoid backbones, or peptomers, using standard

peptide coupling methods (Kim et al., 2020; Olsen, 2010; Ostergaard &

Holm, 1997; Park, Wetzler, Jardetzky, & Barron, 2013). The coupling of

peptide residues to the secondary amine at the N-terminus of the growing

peptoid chain can be somewhat sterically-hindered, and is thus a more chal-

lenging peptide coupling, similar to a peptide coupling to a proline residue,
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and may require double couplings. The coupling of a peptoid to the primary

amine of an amino acid N-terminus, on the other hand, is relatively facile

and proceeds with standard peptoid coupling methods.

4.7.1 Peptide coupling to a peptoid N-terminus
Note: This method is at a 50 μmol resin scale.

1. Add 1mL of 0.4M Fmoc-protected amino acid in NMP. Add 1mL of

0.4M HCTU in DMF and 1mL of 0.4M N-methylmorpholine in

DMF. Incubate with rocking for 1h. Drain and repeat.

2. Remove the Fmoc protecting group by adding 1mL of 20%

4-methylpiperidine in DMF (v/v) to deprotect the resin-bound Fmoc

group. Agitate for 2min and drain. Repeat with an additional 1mL of

20% 4-methylpiperidine in DMF (v/v) with a 20min incubation.

3. Wash the resin with DMF (4�2mL).

4. Proceed to the next coupling in the sequence.

4.8 Peptoid conjugation and N-terminal modification
N-terminal modification and the incorporation of appropriate amine sub-

monomers facilitate conjugation of the resulting peptoids to fluorescent

dyes, nanoparticles, or surfaces. Fmoc-aminohexanoic acid and Fmoc-beta

alanine can be coupled to the N-terminus using standard amino acid cou-

pling methods (see Section 4.7) to provide an N-terminal primary amine

for conjugation. Thiol functionality can be incorporated at the N-terminus

by capping with S-trityl mercaptopropionic acid, and at various sequence

positions using the S-tritylcysteamine as a submonomer. Azide-alkyne “click

chemistry” can be conveniently performed using the submonomers 3-azido-

1-aminopropane (CAS #88192-19-2) and propargyl amine (CAS #2450-

71-7), which can be incorporated as side-chains anywhere in the sequencewith

standard peptoid coupling methods (Holub, Jang, & Kirshenbaum, 2006).

4.8.1 N-formylation to avoidN-terminal degradation withN-acetylated
peptoids

N-terminal acetylated peptoids are often unstable for extended periods in

the TFA cleavage cocktail and acid solutions including TFA buffered

HPLC solvents (Kim et al., 2014) N-Formylated peptoids do not suffer this

instability (Wijaya et al., 2019).

Note: This method is at a 128 μmol resin scale.

1. Swell the resin by incubating with rocking in 2mL of DMF for 30min.

Drain the DMF.
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2. Add 0.5mL of 2MDIC inNMP to the resin quickly followed by 0.5mL

of 2M formic acid inNMP. Incubate for 10minwith rocking, drain, and

repeat once.

3. Wash with DMF (3�2mL).

5. Cleavage and side-chain deprotection

5.1 Standard cleavage/deprotection method
Notes: Trifluoroacetic acid (TFA) is a highly corrosive acid that is extremely

destructive to the upper respiratory tract, eyes, and skin. TFA is also volatile.

All TFA handling steps should be conducted wearing appropriate PPE and

in a chemical fume hood.

1. Transfer all of the dried resin to a 20mL scintillation glass vial with poly-

propylene lined cap. Do not use vials with foil lined caps as the adhesive

will contaminate the sample.

2. Add 4mL of trifluoroacetic acid (TFA) cleavage cocktail (King, Fields, &

Fields, 1990) (e.g., 95%TFA, 2.5% triisopropyl silane, 2.5%water) to the

scintillation glass vial and cap tightly. Shake for 10min to 2h at room

temperature.

Note: The cleavage cocktail used here works for most sequences. However,

additional additives may be required depending on the protecting groups

used in the sequence.

3. Collect the TFA cleavage solution by filtering the resin through a dis-

posable, polypropylene fritted cartridge into a new, pre-weighed 20mL

scintillation glass vial. A disposable, polypropylene pipette is convenient

to transfer the cleavage cocktail solutions.

4. Add 1mL of fresh cleavage cocktail to rinse the resin and collet any resid-

ual peptoid. Repeat twice more.

5. Evaporate the TFA rapidly using an evaporator.

Note: A standard laboratory rotary evaporator with dry ice trap can be used

instead of the Biotage V10 evaporator but may not be as fast or efficient.

6. Redissolve the crude oil/solid in 6mL of acetonitrile/water. Freeze and

lyophilize. Repeat.

7. Record the weight of the crude product. Although most peptoids are

stable at room temperature for extended periods, new compounds

should be stored as a dry powder at -20°C.
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6. Characterization and purification

Analytical chromatography (HPLC, or UPLC), electrospray LC-MS,

and/or MALDI-TOF mass spectrometry can be used to determine the

purity and identity of the crude and purified peptoid product. Mass spec-

trometry can also be used to sequence peptoids to assist in identification

(Ren et al., 2020; Thakkar, Cohen, Connolly, Zuckermann, & Pei,

2009). This is particularly useful for hit identification from combinatorial

libraries.

6.1 Basic characterization guidelines
1. Prepare analytical HPLC/UPLC or electrospray LC-MS samples by

dissolving the peptoid in HPLC grade water with the minimal acetoni-

trile needed for solubility to give a �20μg/mL solution. The sample

should be centrifuged to pellet any particulates or filtered through a

0.2mm filter.

2. Analytical chromatography is conducted using a C4 or C18 column

based on the hydrophobicity of the polypeptoid. C18 is the default col-

umn for most peptoids with C4 used for more hydrophobic sequences.

For basic analysis an acetonitrile/water with 0.1% TFA solvent system

with a gradient from 5% to 95% acetonitrile is typical.

3. To prepare a standard MALDI sample mix 1μL of �20mg/mL peptoid

with 1μL MALDI matrix such as α-cyano-4-hydroxycinnamic acid

(CHCA). Spot 1μL on the MALDI plate and allow to air dry.

6.2 Peptoid purification guidelines
Crude peptoids are purified by reverse-phase preparative HPLC. The sam-

ple should be dissolved in water with a minimum amount of acetonitrile to

achieve full solubility. If necessary, it is better to add more volume decreas-

ing the sample concentration than to add more acetonitrile since this will

negatively impact the resolving power of the chromatography. The sample

should be centrifuged to pellet any particulates, or filtered through a 0.45 μm
syringe filter. Note that the filter membrane type depends on the hydropho-

bicity of the peptoid. Select PVDF or PTFE membrane that will not adsorb

the peptoid. The solvent gradient and column (C4 or C18) are selected

based on the hydrophobicity of the polypeptoid, with the gradient starting

at or above the percent of acetonitrile used to dissolve the sample to prevent
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the sample crashing out on the column. After HPLC the purified fractions

are combined, evaporated, re-solubilized in water with minimal acetonitrile,

frozen, and lyophilized resulting in a fluffy white powder. The resulting

peptoids are the trifluoroacetic acid salt form.

Formation of HCl salt form

1. Dissolve the lyophilized powder in 100mMHCl(aq) with minimal ace-

tonitrile. Transfer to pre-weighed glass vial. Freeze and re-lyophilize

from 100 mM HCl(aq). Repeat 2� twice more.
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